
Mathematical Induction
Part Two



Recap from Last Time



If it starts true…
…and it stays true…

…then it's always true.

Let P be some predicate. The principle of mathematical 
induction states that if

P(0) is true

and

∀k ∈ ℕ. (P(k) → P(k+1))

then

∀n ∈ ℕ. P(n)



Theorem: The sum of the first n powers of two is 2n – 1.

Proof: Let P(n) be the statement “the sum of the first n
powers of two is 2n – 1.” We will prove, by induction, that
P(n) is true for all n ∈ ℕ, from which the theorem follows.

For our base case, we need to show P(0) is true, meaning
that the sum of the first zero powers of two is 20 – 1. Since
the sum of the first zero powers of two is zero and 20 – 1
is zero as well, we see that P(0) is true.

For the inductive step, assume that for some arbitrary
k ∈ ℕ that P(k) holds, meaning that

20 + 21 + … + 2k-1 = 2k – 1. (1)

We need to show that P(k + 1) holds, meaning that the sum
of the first k + 1 powers of two is 2k+1 – 1. To see this,
notice that

20 + 21 + … + 2k-1 + 2k= (20 + 21 + … + 2k-1) + 2k

= 2k – 1 + 2k (via (1))

= 2(2k) – 1

= 2k+1 – 1.

Therefore, P(k + 1) is true, completing the induction. ■
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New Stuff!
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Induction in Practice

Typically, a proof by induction will not 
explicitly state P(n).

Rather, the proof will describe P(n) implicitly 
and leave it to the reader to fill in the details.

Provided that there is sufficient detail to 
determine

• what P(n) is;

• that P(0) is true; and that

• whenever P(k) is true, P(k+1) is true,

the proof is usually valid.



Theorem: The sum of the first n powers of two is 2n – 1.

Proof: By induction.

For our base case, we'll prove the theorem is true when
n = 0. The sum of the first zero powers of two is zero, and
20 – 1 = 0, so the theorem is true in this case.

For the inductive step, assume the theorem holds when

n = k for some arbitrary k ∈ ℕ. Then we have

20 + 21 + … + 2k-1 + 2k = (20 + 21 + … + 2k-1) + 2k

= 2k – 1 + 2k

= 2(2k) – 1

= 2k+1 – 1.

So the theorem is true when n = k+1, completing the
induction. ■



A Fun Application:

The Limits of Data Compression



Bitstrings

A bitstring is a finite sequence of 0s and 
1s.

Examples:

• 11011100

• 010101010101

• 0000

• ε (the empty string)

There are 2n bitstrings of length n.



Data Compression

• Inside a computer, all data are represented as 
sequences of 0s and 1s (bitstrings)

• To transfer data over a network (or on a flash drive, 
if you're still into that), it is useful to reduce the 
number of 0s and 1s before transferring it.

• Most real-world data can be compressed by 
exploiting redundancies.

• Text repeats common patterns (“the”, “and”, etc.)

• Bitmap images use similar colors throughout the 
image.

• Idea: Replace each bitstring with a shorter bitstring
that contains all the original information.

• This is called lossless data compression.
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Lossless Data Compression

In order to losslessly compress data, we need two 
functions:

A compression function C, and

A decompression function D.

We need to have D(C(x)) = x.

Otherwise, we can't uniquely encode or decode some 
bitstring.

This means that D must be a left inverse of C, so (as 
you proved in PS3!) C must be injective.



A Perfect Compression Function

Ideally, the compressed version of a bitstring
would always be shorter than the original 
bitstring.

Question: Can we find a lossless compression 
algorithm that always compresses a string 
into a shorter string?

• To handle the issue of the empty string 
(which can't get any shorter), let's assume 
we only care about strings of length at least 
10.



A Counting Argument

Let 𝔹n be the set of bitstrings of length n, and 𝔹<n be the 
set of bitstrings of length less than n.

How many bitstrings of length n are there?

Answer: 2n

How many bitstrings of length less than n are there?

Answer: 20 + 21 + … + 2n – 1 = 2n – 1

By the pigeonhole principle, no function from 𝔹n to 𝔹<n

can be injective – at least two elements must collide!

Since a perfect compression function would have to be an 
injection from 𝔹n to 𝔹<n, there is no perfect 
compression function!



Why this Result is Interesting

Our result says that no matter how hard we 
try, it is impossible to compress every string 
into a shorter string.

No matter how clever you are, you cannot 
write a lossless compression algorithm that 
always makes strings shorter.

In practice, only highly redundant data can be 
compressed.

The fields of information theory and 
Kolmogorov complexity explore the limits of 
compression; if you're interested, go explore!



All Horses are the Same Color

P(n) = “All groups of n horses always 
have the same color”



Base case: n = 0

All Horses are the Same Color

P(0) = “All groups of 0 horses always 
have the same color”

Vacuously true!



Inductive hypothesis: n = k

All Horses are the Same Color

Assume P(k) = “All groups of k horses 
always have the same color”



Inductive hypothesis: n = k+1

All Horses are the Same Color

Prove P(k+1) = “All groups of k+1 horses 
always have the same color”
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Inductive hypothesis: n = k+1

All Horses are the Same Color

Prove P(k+1) = “All groups of k+1 horses 
always have the same color”

These horses in the middle were in both sets

And we said that both horses on the ends are 
the same color as these overlapping horses



Inductive hypothesis: n = k+1

All Horses are the Same Color

Prove P(k+1) = “All groups of k+1 horses 
always have the same color”

So all k+1 horses have the same color!



What’s going on here?



Inductive hypothesis: n = k+1

All Horses are the Same Color

Prove P(k+1) = “All groups of k+1 horses 
always have the same color”

These horses in the middle were in both sets



Inductive hypothesis: n = k+1

All Horses are the Same Color

Prove P(k+1) = “All groups of k+1 horses 
always have the same color”

These horses in the middle were in both sets

But what if there are no such 
horses?



All Horses are the Same Color

P(1) → P(2)

P(n) = “All groups of n horses always 
have the same color”
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P(1) → P(2)
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All Horses are the Same Color

P(1) → P(2)

P(n) = “All groups of n horses always 
have the same color”

These horses in the middle (??) were in both sets



Theorem: All horses are the same color.

Proof: Let P(n) be the statement “all groups of n horses are the same 
color.” We will prove by induction that P(n) holds for all natural 
numbers n, from which the theorem follows.

As our base case, we prove P(0), that all groups of 0 horses are the 
same color. This statement is vacuously true because there are no 
horses.

For the inductive step, assume that for an arbitrary natural number k 
that P(k) is true and that all groups of k horses are the same color. 
Now consider a group of k+1 horses. Exclude the last horse and look 
only at the first k horses. By the inductive hypothesis, these horses 
are the same color. Next, exclude the first horse and look only at the 
last k horses. Again we see by the inductive hypothesis that these 
horses are the same color.

Therefore, the first horse is the same color as the non-excluded 
horses, who in turn are the same color as the last horse. Hence the 
first horse excluded, the non-excluded horses, and last horse 
excluded are all of the same color. Thus P(k+1) holds, completing 
the induction. ■



Complete Induction



If it starts true…
…and it stays true…

…then it's always true.

Let P be some predicate. The principle of complete 
induction states that if

P(0) is true

and

for any k ∈ ℕ, if P(0), P(1), …, and P(k) are true,
then P(k+1) is true

then

∀n ∈ ℕ. P(n)



Mathematical Induction

You can write proofs using the principle of 
mathematical induction as follows:

• Define some predicate P(n) to prove by 
induction on n.

• Choose and prove a base case (probably, 
but not always, P(0)).

• Pick an arbitrary k ∈ ℕ and assume that
P(k) is true.

• Prove P(k+1).

• Conclude that P(n) holds for all n ∈ ℕ.



Complete Induction

You can write proofs using the principle of 
complete induction as follows:

• Define some predicate P(n) to prove by 
induction on n.

• Choose and prove a base case (probably, 
but not always, P(0)).

• Pick an arbitrary k ∈ ℕ and assume that 
P(0), P(1), P(2), …, and P(k) are all 
true.

• Prove P(k+1).

• Conclude that P(n) holds for all n ∈ ℕ.



A Motivating Example: Rat Mazes





Rat Mazes

Suppose you want to make 
a rat maze consisting of an 
n × m grid of pegs with 
slats between them.

●The maze should have 
these properties:

There is one entrance and 
one exit in the border.

Every spot in the maze is 
reachable from every other 
spot.

There is exactly one path 
from each spot in the maze 
to each other spot.
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Rat Mazes

Suppose you want to make 
a rat maze consisting of an 
n × m grid of pegs with 
slats between them.

The maze should have 
these properties:

There is one entrance and 
one exit in the border.

Every spot in the maze is 
reachable from every other 
spot.

There is exactly one path 
from each spot in the maze 
to each other spot.



Question: If you have an n × m grid of 
pegs, how many slats do you need to make?



A Special Type of Graph: Trees



According to the above definition of trees, how many of these
graphs are trees?

A tree is a connected, 
nonempty graph with 

no simple cycles.



Trees

A tree is a connected, 
nonempty graph with no 
simple cycles.

●Trees have tons of nice 
properties:

They're maximally acyclic
(adding any missing edge 
creates a simple cycle)

They're minimally connected
(deleting any edge disconnects 
the graph)

●Proofs of these results are in 
the course reader if you're 
interested. They're also great 
exercises.
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Trees

Theorem: If T is a 
tree with at least two 
nodes, then deleting 
any edge from T splits 
T into two nonempty 
trees T₁ and T₂.  

Proof: Left as an 
exercise to the reader. 
☺
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Trees

Theorem: If T is a 
tree with n ≥ 1 
nodes, then T has 
exactly n-1 edges.

Proof: Up next!
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Trees

Theorem: If T is a 
tree with n ≥ 1 
nodes, then T has 
exactly n-1 edges.

Proof: Up next!
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Our Base Case



Assume any tree with at most 
k nodes has one more node 

than edge.
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Assume any tree with at most 
k nodes has one more node 

than edge.

Consider an arbitrary tree with k+1 
nodes.

Suppose there are r nodes in the 
yellow tree.

There are r-1 edges in the yellow 
tree and k-r edges in the blue tree.

Adding in the initial edge we cut, 
there are

r-1 + k-r + 1 = k edges in the original 
tree.

Then there are (k+1)-r nodes in the 
blue tree.



Theorem: If T is a tree with n ≥ 1 nodes, then T has n-1 edges.

Proof: Let P(n) be the statement “any tree with n nodes has n-1 edges.”
We will prove by induction that P(n) holds for all n ≥ 1, from which
the theorem follows.

As a base case, we will prove P(1), that any tree with 1 node has 0 edges. Any 
such tree has single node, so it cannot have any edges.

Now, assume for some arbitrary k ≥ 1 that P(1), P(2), …, and P(k) are true, so 
any tree with between 1 and k nodes has one more node than edge. We will 
prove P(k+1), that any tree with k+1 nodes has k edges.

Consider any tree T with k+1 nodes. Since T has at least two nodes and is 
connected, it must contain at least one edge. Choose any edge in T and 
delete it. This splits T into two nonempty trees T₁ and T₂. Every edge in T is 
part of T₁, is part of T₂, or is the initial edge we deleted.

Let r be the number of nodes in T₁. Since every node in T belongs to either T₁ 
or T₂, we see that T₂ has (k+1)-r nodes. Additionally, since T₁ and T₂ are 
nonempty, neither T₁ nor T₂ contains all the nodes from T. Therefore, T₁ and 
T₂ each have between 1 and k nodes. We can then apply our inductive 
hypothesis to see that T₁ has r-1 edges and T₂ has k-r edges. Thus the total 
number of edges in T is 1 + (r-1) + (k-r) = k, as required. Therefore, P(k+1) 
is true, completing the induction. ■
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Let r be the number of nodes in T₁. Since every node in T belongs to either T₁ 
or T₂, we see that T₂ has (k+1)-r nodes. Additionally, since T₁ and T₂ are 
nonempty, neither T₁ nor T₂ contains all the nodes from T. Therefore, T₁ and 
T₂ each have between 1 and k nodes. We can then apply our inductive 
hypothesis to see that T₁ has r-1 edges and T₂ has k-r edges. Thus the total 
number of edges in T is 1 + (r-1) + (k-r) = k, as required. Therefore, P(k+1) 
is true, completing the induction. ■
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Induction

Complete 
Induction

Size = k+1
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grid of pegs with slats 
between them.

Question: How many 
slats do you need to 
create?

Answer: mn – 2.
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Rat Mazes

Suppose you want to 
make a rat maze 
consisting of an n × m
grid of pegs with slats 
between them.

Question: How many 
slats do you need to 
create?

Answer: mn – 2.

This is a tree!



For more on trees, take CS161 / 261 / 267!



Three Questions

What is something you know now that, at 
the start of the quarter, you knew you 
didn’t know?

What is something you know now that, at 
the start of the quarter, you didn’t know 
that you didn’t know?

What is something you don’t know that, at 
the start of the quarter, you didn’t know 
that you didn’t know?



Let’s play a game!



Rules

Start with a pile of n coins for some n ≥ 0

Players take turns removing between 1 and 5 
coins from the pile

The player who has no more coins to remove 
loses the game

Interestingly, if the pile begins with a 
multiple of 6 coins in it, the second player 
can always win if they play correctly



Rules

Start with a pile of n coins for some n ≥ 0

Players take turns removing between 1 and 5 
coins from the pile

The player who has no more coins to remove 
loses the game

Interestingly, if the pile begins with a 
multiple of 6 coins in it, the second player 
can always win if they play correctly – give it 
a try!



What’s the strategy?



If it’s the first player’s turn and there are no coins left, then the 
second player wins

●If we start with 6 coins, player 1 has to remove some but not 
all of the coins. Then player 2 can remove the remaining coins, 
leaving us in a known winning state.

●What happens when there are 12 coins? Player 1 removes 
some coins, but then player 2 can remove the right number of 
coins to leave 6 remaining. It’s player 1’s turn again and there 
are 6 coins, again a known winning state.

Some Observations

Player 2Player 1
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Strategy: The second player can win by 
making the total number of coins removed 
by their move and the first player’s move 

come out to 6.



Strategy: The second player can win by 
making the total number of coins removed 
by their move and the first player’s move 

come out to 6.

It is a great idea to try small cases before jumping into a 

formal proof. It will be much easier to formalize the logic here now 
that you have a feel for how to play the game.



The big question in a proof by induction: 
How can I leverage a smaller result to 
help me prove a bigger result?



Build Up Build Downvs.

Start with 
smaller 
object, use it 
to construct 
larger object

Start with 
larger object, 
break it down 
into smaller 
objects



Build Up

Start with 
smaller 
object, use it 
to construct 
larger object

Build up if P(n) is 
existentially qualified

We can use our 
inductive hypothesis 
(there exists an object 
of size k) to prove that 
there exists an object 
of size k+1



Build Down

Start with 
larger object, 
break it down 
into smaller 
objects

Build down if P(n) is 
universally qualified

Our inductive 
hypothesis (for all 
objects of size k, 
some property is 
true) doesn’t apply to 
an object of size k+1



For all games where the number of coins is 
a multiple of 6, the second player can always 
win if they play correctly.

What is P(n)?

Let P(n) be the statement “if the game is played with the pile 
containing n coins, the second player can always win if she 
plays correctly.”

What does the problem size “n” in P(n) represent?

The problem size is the number of coins.

What is the base case?

The base case is n=0, the simplest possible case  of the game is 
when you start with no coins.

What is the step size?

We want to show the result is true for multiples of 6, so we’ll 
take steps of size 6.
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Is P(n) universally or 
existentially quantified? 
Based on that, should we 
build up or build down?

P(n) is universally qualified 
so we should build down 
(start with a game of size 
k+6 and figure out how to 
reduce it to a game of size 
k). 

P(n) = “if the game is played with the pile 
containing n coins, the second player can 
always win if they play correctly.”

P(k)

P(k+6)
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Is P(n) universally or 
existentially quantified? 
Based on that, should we 
build up or build down?

P(n) is universally qualified 
so we should build down 
(start with a game of size 
k+6 and figure out how to 
reduce it to a game of size 
k).   

P(n) = “if the game is played with the pile 
containing n coins, the second player can 
always win if they play correctly.”

P(k)

P(k+6)

Notice how even if we had no idea how to 
accomplish this yet, we can still answer all of 

these questions and set up the proof 
correctly – this is huge!



P(n) = “if the game is played with the pile 
containing n coins, the second player can 
always win if they play correctly.”

Assume P(k)

(If the game is played 
with k coins, the second 
player can always win)

Prove P(k+6)

(If the game is played with 
k+6 coins, the second 
player can always win)
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(If the game is played 
with k coins, the second 
player can always win)

Prove P(k+6)

(If the game is played with 
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player can always win)

We want to take a game with k+6 coins 
and explain the strategy for reducing that 
game into one with just k coins so that we 

can apply the inductive hypothesis
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P(n) = “if the game is played with the pile 
containing n coins, the second player can 
always win if they play correctly.”

Assume P(k)

(If the game is played 
with k coins, the second 
player can always win)

Prove P(k+6)

(If the game is played with 
k+6 coins, the second 
player can always win)

Now there are k coins remaining, 
meaning that we can apply our inductive 

hypothesis



An Important Milestone



Recap: Discrete Mathematics

The past five weeks have focused exclusively on discrete 
mathematics:

• Induction

• Functions

• Graphs

• The Pigeonhole Principle

• Relations

• Mathematical Logic

• Set Theory

These are building blocks we will use throughout the rest of 
the quarter.

These are building blocks you will use throughout the rest of 
your CS career.



Next Up: Computability Theory

It's time to switch gears and address the 
limits of what can be computed.

We'll explore these questions:

How do we model computation itself?

What exactly is a computing device?

What problems can be solved by computers?

What problems can't be solved by computers?

Get ready to explore the boundaries of 
what computers could ever be made to do.



Next Time

Formal Language Theory

How are we going to formally model 
computation?

Finite Automata

A simple but powerful computing device 
made entirely of math!

DFAs

A fundamental building block in computing.


